High-Resolution Single-Shot Fast Spin-Echo MR Imaging with Deep Learning Reconstruction Algorithm Can Improve Repeatability and Reproducibility of Follicle Counting

Author:

Yang Renjie1,Zou Yujie2,Liu Weiyin (Vivian)3,Liu Changsheng1,Wen Zhi1,Li Liang1,Sun Chenyu4,Hu Min5,Zha Yunfei1

Affiliation:

1. Department of Radiology, Renmin Hospital of Wuhan University, Wuhan 430060, China

2. Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan 430060, China

3. MR Research, GE Healthcare, Beijing 100080, China

4. First School of Clinical Medicine of Wuhan University, Wuhan 430060, China

5. Department of Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430060, China

Abstract

Objective: To investigate the diagnostic performance of high-resolution single-shot fast spin-echo (SSFSE) imaging with deep learning (DL) reconstruction algorithm on follicle counting and compare it with original SSFSE images and conventional fast spin-echo (FSE) images. Methods: This study included 20 participants (40 ovaries) with clinically confirmed polycystic ovary syndrome (PCOS) who underwent high-resolution ovary MRI, including three-plane T2-weighted FSE sequences and slice-matched T2-weighted SSFSE sequences. A DL reconstruction algorithm was applied to the SSFSE sequences to generate SSFSE-DL images, and the original SSFSE images were also saved. Subjective evaluations such as the blurring artifacts, subjective noise, and clarity of the follicles on the SSFSE-DL, SSFSE, and conventional FSE images were independently conducted by two observers. Intra-class correlation coefficients and Bland–Altman plots were used to present the repeatability and reproducibility of the follicle number per ovary (FNPO) based on the three types of images. Results: SSFSE-DL images showed less blurring artifact, subjective noise, and better clarity of the follicles than SSFSE and FSE (p < 0.05). For the repeatability of the FNPO, SSFSE-DL showed the highest intra-observer (ICC = 0.930; 95% CI: 0.878–0.962) and inter-observer (ICC = 0.914; 95% CI: 0.843–0.953) agreements. The inter-observer 95% limits of agreement (LOA) for SSFSE-DL, SSFSE, and FSE ranged from −3.7 to 4.5, −4.4 to 7.0, and −7.1 to 7.6, respectively. The intra-observer 95% LOA for SSFSE-DL, SSFSE, and FSE ranged from −3.5 to 4.0, −5.1 to 6.1, and −5.7 to 4.2, respectively. The absolute values of intra-observer and inter-observer differences for SSFSE-DL were significantly lower than those for SSFSE and FSE (p < 0.05). Conclusions: Compared with the original SSFSE images and the conventional FSE images, high-resolution SSFSE images with DL reconstruction algorithm can better display follicles, thus improving FNPO assessment.

Funder

Key Laboratory Project of Hubei Province

Interdisciplinary Innovative Talents Foundation from Renmin Hospital of Wuhan University

Publisher

MDPI AG

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3