Efficient Blind Hyperspectral Unmixing Framework Based on CUR Decomposition (CUR-HU)

Author:

Abdelgawad Muhammad A. A.1ORCID,Cheung Ray C. C.1,Yan Hong1ORCID

Affiliation:

1. Department of Electrical Engineering and Centre for Intelligent Multidimensional Data Analysis, City University of Hong Kong, Hong Kong

Abstract

Hyperspectral imaging captures detailed spectral data for remote sensing. However, due to the limited spatial resolution of hyperspectral sensors, each pixel of a hyperspectral image (HSI) may contain information from multiple materials. Although the hyperspectral unmixing (HU) process involves estimating endmembers, identifying pure spectral components, and estimating pixel abundances, existing algorithms mostly focus on just one or two tasks. Blind source separation (BSS) based on nonnegative matrix factorization (NMF) algorithms identify endmembers and their abundances at each pixel of HSI simultaneously. Although they perform well, the factorization results are unstable, require high computational costs, and are difficult to interpret from the original HSI. CUR matrix decomposition selects specific columns and rows from a dataset to represent it as a product of three small submatrices, resulting in interpretable low-rank factorization. In this paper, we propose a new blind HU framework based on CUR factorization called CUR-HU that performs the entire HU process by exploiting the low-rank structure of given HSIs. CUR-HU incorporates several techniques to perform the HU process with a performance comparable to state-of-the-art methods but with higher computational efficiency. We adopt a deterministic sampling method to select the most informative pixels and spectrum components in HSIs. We use an incremental QR decomposition method to reduce computation complexity and estimate the number of endmembers. Various experiments on synthetic and real HSIs are conducted to evaluate the performance of CUR-HU. CUR-HU performs comparably to state-of-the-art methods for estimating the number of endmembers and abundance maps, but it outperforms other methods for estimating the endmembers and the computational efficiency. It has a 9.4 to 249.5 times speedup over different methods for different real HSIs.

Funder

Hong Kong Innovation and Technology Commission

Hong Kong Research Grants Council

City University of Hong Kong

Publisher

MDPI AG

Reference79 articles.

1. Three decades of hyperspectral remote sensing of the Earth: A personal view;Goetz;Remote Sens. Environ.,2009

2. Spectral variability in hyperspectral data unmixing: A comprehensive review;Borsoi;IEEE Geosci. Remote Sens. Mag.,2021

3. Spectral unmixing;Keshava;IEEE Signal Process. Mag.,2002

4. Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches;Plaza;IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.,2012

5. Estimation of number of spectrally distinct signal sources in hyperspectral imagery;Chang;IEEE Trans. Geosci. Remote Sens.,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3