Evodiamine Induces Apoptosis in SMMC-7721 and HepG2 Cells by Suppressing NOD1 Signal Pathway

Author:

Guo Xing-Xian,Li Xiao-Peng,Zhou Peng,Li Dan-Yang,Lyu Xiao-Ting,Chen Yi,Lyu Yan-Wei,Tian Kuan,Yuan De-Zhi,Ran Jian-Hua,Chen Di-Long,Jiang Rong,Li Jing

Abstract

Hepatocellular cancer (HCC) is a lethal malignancy with poor prognosis and easy recurrence. There are few agents with minor toxic side effects that can be used for treatment of HCC. Evodiamine (Evo), one of the major bioactive components derived from fructus Evodiae, has long been shown to exert anti-hepatocellular carcinoma activity by suppressing activation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK). In addition, in the Nucleotide-Binding Oligomerization Domain 1 (NOD1) pathway, NOD1 could initiate NF-κB-dependent and MAPK-dependent gene transcription. Recent experimental studies reported that the NOD1 pathway was related to controlling development of various tumors. Here we hypothesize that Evo exerts anti-hepatocellular carcinoma activity by inhibiting NOD1 to suppress NF-κB and MAPK activation. Therefore, we proved the anti-hepatocellular carcinoma activity of Evo on HCC cells and detected the effect of Evo on the NOD1 pathway. We found that Evo significantly induced cell cycle arrest at the G2/M phase, upregulated P53 and Bcl-2 associated X proteins (Bax) proteins, and downregulated B-cell lymphoma-2 (Bcl-2), cyclinB1, and cdc2 proteins in HCC cells. In addition, Evo reduced levels of NOD1, p-P65, p-ERK, p-p38, and p-JNK, where the level of IκBα of HCC cells increased. Furthermore, NOD1 agonist γ-D-Glu-mDAP (IE-DAP) treatment weakened the effect of Evo on suppression of NF-κB and MAPK activation and cellular proliferation of HCC. In an in vivo subcutaneous xenograft model, Evo also exhibited excellent tumor inhibitory effects via the NOD1 signal pathway. Our results demonstrate that Evo could induce apoptosis remarkably and the inhibitory effect of Evo on HCC cells may be through suppressing the NOD1 signal pathway in vitro and in vivo.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3