Development and Application of a New Exponential Model for Hydraulic Conductivity with Depth of Rock Mass

Author:

Dou Zhi1,Huang Xin1,Wan Weifeng2,Zeng Feng2,Wang Chaoqi1

Affiliation:

1. School of Earth Sciences and Engineering, Hohai University, Nanjing 210098, China

2. Yellow River Engineering Consulting Co., Ltd., Zhengzhou 450003, China

Abstract

Hydraulic conductivity generally decreases with depth in the Earth’s crust. The hydraulic conductivity–depth relationship has been assessed through mathematical models, enabling predictions of hydraulic conductivity in depths beyond the reach of direct measurements. However, it is observed that beyond a certain depth, hydraulic conductivity tends to stabilize; this phenomenon cannot be effectively characterized by the previous models. Thus, these models may make inaccurate predictions at deeper depths. In this work, we introduce an innovative exponential model to effectively assess the conductivity–depth relationship, particularly addressing the stabilization at greater depths. This model, in comparison with an earlier power-like model, has been applied to a globally sourced dataset encompassing a range of lithologies and geological structures. Results reveal that the proposed exponential model outperforms the power-like model in correctly representing the stabilized conductivity, and it well captures the fast stabilization effect of multiple datasets. Further, the proposed model has been utilized to analyze three distinct groups of datasets, revealing how lithology, geological stabilization, and faults impact the conductivity–depth relationship. The hydraulic conductivity decays to the residual hydraulic conductivity in the order (fast to slow): metamorphic rocks, sandstones, igneous rock, mudstones. The mean hydraulic conductivity in stable regions is roughly an order of magnitude lower than unstable regions. The faults showcase a dual role in both promoting and inhibiting hydraulic conductivity. The new exponential model has been successfully applied to a dataset from a specific engineering site to make predictions, demonstrating its practical usage. In the future, this model may serve as a potential tool for groundwater management, geothermal energy collection, pollutant transport, and other engineering projects.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Reference58 articles.

1. Brady, B.H.G., and Brown, E.T. (1985). Rock Mechanics: For Underground Mining, Springer.

2. Rock mass permeability classification schemes to facilitate groundwater availability assessment in mountainous areas: A case study in Jhuoshuei river basin of Taiwan;Hsu;Geosci. J.,2020

3. Simple methods for assessing groundwater resources in low permeability areas of Africa;MacDonald;Br. Geol. Surv.,2001

4. Hamill, L., and Bell, F.G. (2013). Groundwater Resource Development, Elsevier.

5. Porosity, permeability, and fluid flow in the Yellowstone geothermal system, Wyoming;Dobson;J. Volcanol. Geotherm. Res.,2003

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3