Investigation of Porous Ceramic Structures Based on Hydroxyapatite and Wollastonite with Potential Applications in the Field of Tissue Engineering

Author:

Cucuruz Andreia1ORCID,Ghițulică Cristina-Daniela2,Voicu Georgeta2,Bogdan Cătălina-Alexandra1,Dochiu Vasilica1,Popescu Roxana Cristina13

Affiliation:

1. Department of Bioengineering and Biotechnology, Faculty of Medical Engineering, National University of Science and Technology Politehnica, 011061 Bucharest, Romania

2. Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica, 011061 Bucharest, Romania

3. Department of Life and Environmental Physics, National Institute for R&D in Physics and Nuclear Engineering-Horia Hulubei, 077125 Magurele, Romania

Abstract

Bioceramics are the most promising materials used for hard tissue reconstruction. In this study, wollastonite/hydroxyapatite (HAp/WS)-type composite ceramic structures were synthesized with the aim of reaching a material with improved properties for use in bone tissue regeneration. The scaffolds were synthesized using a foam replica method, starting from ceramic powders with different mass ratios. These were subsequently studied and compared to identify the ideal mass ratio in terms bioactive character, appropriate mechanical properties, but also microstructural influence. The results indicate that all of the samples showed a highly porous microstructure with interconnected pores and high mineralization after 21 days of immersion in SBF. The porous structures with 90% and 70% mass contents of hydroxyapatite presented a well-defined structure and the highest values of mechanical compressive strength. Biocompatibility evaluation showed that osteoblast-like cells are able to penetrate the inner volume of the structures, exhibiting a biocompatible behavior in terms of morphological features and viability following 7 days of incubation. All results show that the porous composite ceramics with 90% and 70% mass contents of hydroxyapatite are promising materials for bone tissue regeneration.

Funder

National University of Science and Technology Politehnica Bucharest

Publisher

MDPI AG

Subject

Materials Science (miscellaneous),Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3