Effect of Processing Conditions on the Microstructure, Mechanical Properties, and Corrosion Behavior of Two Austenitic Stainless Steels for Bioimplant Applications

Author:

Silva Mariana-Beatriz R.,Roche Virgine,Blanco Telma M.,Viet Nguyen HoangORCID,Balancin Oscar,Cabrera José-MaríaORCID,Jorge Alberto Moreira

Abstract

Hot torsion tests were carried out to simulate the industrial thermomechanical processing of two austenitic steels for bioimplant applications, namely ISO 5832-9 and ASTM F138. The former has Ti, Nb, and V in the composition, being N-rich. However, the latter is Ni-richer and without extra alloying element additions. Special attention was paid to the effect of interpass times, particularly to the soaking temperature, which was reduced to decrease processing times and costs. Optical and electron microscopy, corrosion tests, and hardness measurements were used to characterize the effect of the above processing parameters on both alloys. No significant increase in processing loads was noticed after the reduction of the reheating temperature. This was explained in terms of the balance between partial particles dissolution and the increment in the solute drag effect provided by the elements put into solution. Such an increment in solid solution favored the dynamic recovery process, delaying the dynamic recrystallization one. However, strain-induced precipitation took place at lower temperatures, by using the extra N and Cr delivered to the matrix, and limiting the recrystallization softening. The rolling schedule promoted abundant grain refinement. The final grain size ranged from 2.5 to 11 µm, depending on reheating temperature, interpass time, presence of alloying elements, and N. In general terms, the corrosion resistance of the ISO steel soaked at the lowest temperature (1200 °C) was better than when reheated to the highest one (1250 °C). On the contrary, the F138 steel had worse corrosion behavior.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3