Hepatic Steatosis Can Be Partly Generated by the Gut Microbiota–Mitochondria Axis via 2-Oleoyl Glycerol and Reversed by a Combination of Soy Protein, Chia Oil, Curcumin and Nopal

Author:

Sánchez-Tapia Mónica1,Tobón-Cornejo Sandra1ORCID,Noriega Lilia G.1,Vázquez-Manjarrez Natalia1ORCID,Coutiño-Hernández Diana1ORCID,Granados-Portillo Omar1,Román-Calleja Berenice M.2,Ruíz-Margáin Astrid2,Macías-Rodríguez Ricardo U.2ORCID,Tovar Armando R.1ORCID,Torres Nimbe1ORCID

Affiliation:

1. Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City 14080, México

2. Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City 14080, México

Abstract

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a serious health problem, and recent evidence indicates that gut microbiota plays a key role in its development. It is known that 2-oleoyl glycerol (2-OG) produced by the gut microbiota is associated with hepatic fibrosis, but it is not known whether this metabolite is involved in the development of hepatic steatosis. The aim of this study was to evaluate how a high-fat–sucrose diet (HFS) increases 2-OG production through gut microbiota dysbiosis and to identify whether this metabolite modifies hepatic lipogenesis and mitochondrial activity for the development of hepatic steatosis as well as whether a combination of functional foods can reverse this process. Wistar rats were fed the HFS diet for 7 months. At the end of the study, body composition, biochemical parameters, gut microbiota, protein abundance, lipogenic and antioxidant enzymes, hepatic 2-OG measurement, and mitochondrial function of the rats were evaluated. Also, the effect of the consumption of functional food with an HFS diet was assessed. In humans with MASLD, we analyzed gut microbiota and serum 2-OG. Consumption of the HFS diet in Wistar rats caused oxidative stress, hepatic steatosis, and gut microbiota dysbiosis, decreasing α-diversity and increased Blautia producta abundance, which increased 2-OG. This metabolite increased de novo lipogenesis through ChREBP and SREBP-1. 2-OG significantly increased mitochondrial dysfunction. The addition of functional foods to the diet modified the gut microbiota, reducing Blautia producta and 2-OG levels, leading to a decrease in body weight gain, body fat mass, serum glucose, insulin, cholesterol, triglycerides, fatty liver formation, and increased mitochondrial function. To use 2-OG as a biomarker, this metabolite was measured in healthy subjects or with MASLD, and it was observed that subjects with hepatic steatosis II and III had significantly higher 2-OG than healthy subjects, suggesting that the abundance of this circulating metabolite could be a predictor marker of hepatic steatosis.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3