Comparison of Glutathione Nanoparticles, CoEnzyme Q10, and Fish Oil for Prevention of Oxygen-Induced Retinopathy in Neonatal Rats

Author:

Bashir Sidra1,Cai Charles L.1,Marcelino Matthew2,Aranda Jacob V.134,Beharry Kay D.134ORCID

Affiliation:

1. Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA

2. Medical School, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA

3. Department of Ophthalmology, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA

4. SUNY Eye Institute, Brooklyn, NY 11203, USA

Abstract

Notch ligands and receptors are important for cell specification and angiogenesis, but their role in oxygen-induced retinopathy (OIR) is not well studied. Delta-like ligand (DLL)-4/Notch inhibits angiogenesis, while Jagged-1/Notch promotes angiogenesis. We tested the hypothesis that early supplementation with antioxidants and/or fish oil curtails severe OIR by inducing DLL-4/Notch and reducing Jagged-1/Notch. Newborn rats were exposed to brief intermittent hypoxia (IH) during hyperoxia, during which they received daily oral supplements of (1) fish oil, (2) coenzyme Q10 (CoQ10) in olive oil (OO), (3) glutathione nanoparticles (nGSH), (4) fish oil + CoQ10, or (5) OO (controls) from birth (P0) to P14. At P14, the pups were placed in room air (RA) until P21, with no further treatment. Oxidative stress, apoptosis, ocular histopathology, and Notch signaling were assessed. Neonatal IH resulted in severe retinal damage consistent with retinopathy of prematurity (ROP). Retinal damage was associated with induced oxidative stress and Jagged-1/Notch signaling, as well as reduced DLL-4/Notch signaling. All treatments reversed these outcomes, but nGSH produced the most beneficial outcomes. Severe OIR promoted the induction of Jagged-1/Notch and curtailed DLL-4/Notch, which was an effect that could be reversed with nGSH supplementation. These findings may indicate a potential alternate pathway for ROP treatment and/or prevention.

Funder

Eunice Kennedy Shriver National Institute of Child Health and Human Development

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3