Abstract
In high-frequency surface wave radar (HFSWR) systems, clutter is a common phenomenon that causes objects to be submerged. Space-time adaptive processing (STAP), which uses two-dimensional data to increase the degrees of freedom, has recently become a crucial tool for clutter suppression in advanced HFSWR systems. However, in STAP, the pattern is distorted if a clutter component is contained in the main lobe, which leads to errors in estimating the target angle and Doppler frequency. To solve the main-lobe distortion problem, this study developed a clutter-suppression method based on beam reshaping (BR). In this method, clutter components were estimated and maximally suppressed in the side lobe while ensuring that the main lobe remained intact. The results of the proposed algorithm were evaluated by comparison with those of standard STAP and sparse-representation STAP (SR-STAP). Among the tested algorithms, the proposed BR algorithm had the best suppression performance and the most accurate main-lobe peak response, thereby preserving the target angle and Doppler frequency information. The BR algorithm can assist with target detection and tracking despite a background with ionospheric clutter.
Funder
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献