Fully Integrated Hybrid Solid Oxide Fuel Cell–Rankine Cycle System with Carbon Capture, Utilisation, and Storage for Sustainable Combined Heat and Power Production

Author:

Gruber Sven1ORCID,Rola Klemen1,Goričanec Darko1,Urbancl Danijela1

Affiliation:

1. Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia

Abstract

The imperative to combat climate change necessitates the rapid implementation of technologically advanced, zero-emission renewable energy solutions, particularly considering the mounting energy demands and the pressing need to mitigate global warming. The proposed SOFC system, integrated with a modified Rankine Cycle and CCUS technology, offers a highly efficient, renewable system with a net-zero carbon footprint, utilising green biogas as an alternative. The fully integrated system at continuous operation does not require outside heat sources and, besides, its main electricity production can supply 231 households with hot sanitary water. A base case and sensitivity analysis of the system was conducted studying different operating parameters. The base case simulation, conducted at SOFC/reformer operating temperatures of 850 °C/650 °C and operating parameters S/C = 2.5, Uf = 0.70 Ua = 0.1806, yielded an overall efficiency of 71.64%, with a 67.70% electrical efficiency. Further simulations demonstrated that a 1.60% and 1.53% increase in the overall and electrical efficiencies of the proposed alternative, respectively, would be achieved at SOFC/reformer operating temperatures of 950 °C/650 °C. The simulated hybrid system represents a competitive installation in the renewable energy market, which offers a viable and sustainable alternative to traditional forms of energy generation.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3