Abstract
Medium and heavy-duty battery electric trucks (BETs) may play a key role in mitigating greenhouse gas (GHG) emissions from road freight transport. However, technological challenges such as limited range and cargo carrying capacity as well as the required charging time need to be efficiently addressed before the large-scale adoption of BETs. In this study, we apply a geospatial data analysis approach by using a battery electric vehicle potential (BEVPO) model with the datasets of road freight transport surveys for analyzing the potential of large-scale BET adoption in Finland and Switzerland for trucks with gross vehicle weight (GVW) of over 3.5 t. Our results show that trucks with payload capacities up to 30 t have the most potential for electrification by relying on the currently available battery and plug-in charging technology, with 93% (55% tkm) and 89% (84% tkm) trip coverage in Finland and Switzerland, respectively. Electric road systems (ERSs) would be essential for covering 51% trips (41% tkm) of heavy-duty trucks heavier than 30 t in Finland. Furthermore, range-extender technology could improve the trip electrification potential by 3–10 percentage points (4–12 percentage points of tkm).
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference48 articles.
1. The State of Clean Transport Policy: A 2014 Synthesis of Vehicle and Fuel Policy Developments;Miller,2014
2. White Paper: Transitioning to Zero-Emission Heavy-Duty Freight Vehicles;Moultak,2017
3. Working Paper: Overview of the Heavy-Duty Vehicle Market and CO2 Emissions in the European Union;Muncrief,2015
4. The long haul towards decarbonising road freight – A global assessment to 2050
5. Carbon and energy footprints of refuse collection trucks: A hybrid life cycle evaluation
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献