Isolation and Characterization of Novel Huperzine-Producing Endophytic Fungi from Lycopodiaceae Species

Author:

Le Thanh Thi Minh12,Pham Ha Thanh1,Trinh Ha Thi Thu1,Tran Hoa Thi1,Chu Ha Hoang12

Affiliation:

1. Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam

2. Vietnam Academy of Science and Technology, Graduate University of Science and Technology, Hanoi 100000, Vietnam

Abstract

Huperzine A (HupA) is an important drug for treating Alzheimer’s disease (AD) and is primarily extracted from the Huperzia serrata (Lycopodiaceae). Failures in the chemical synthesis of Hup and in vitro culture have put H. serrata in danger of extinction, and there is a need for an extensive investigation of Hup from alternative perspectives. The aim of this study is to identify endophytic fungi that produce high Hup or simultaneously produce many types of Hup and have high genetic stability derived from other Lycopodiaceae species as a source of materials for natural Hup production. In this work, Hup-producing endophytic fungi were isolated from three species: Lycopodium clavatum, Phlegmariurus squarrosus, and P. phlegmaria. Of these, L. clavatum and P. squarrosus were confirmed as novel sources of Hup-producing fungi. Based on morphological characteristics and nuclear ribosomal DNA ITS sequences, four endophytic fungi Colletotrichum siamense THG1-17, Epicoccum sorghinum THG01-18, Phoma sp. TKH3-2, and Phyllosticta sp. THG2-27 were firstly isolated from these Lycopodiaceae plants, which were capable of simultaneously producing both HupA and HupB, as evidenced by high-performance liquid chromatography analysis. The four strains showed stability in Hup yield over 50 generations of culture with an in vitro storage period of 3 months. These isolated fungi will provide a new source of materials for further research to develop drugs containing HupA as well as HupB for AD treatment in the future.

Funder

Vietnam Academy of Science and Technology

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3