Evaluation of Different Tools of Precision Finishing for Sun Gear with Inner-Outer Tooth Shapes

Author:

Liang QiangORCID,Zhang Xianming,Liu Yunqi,Zhou Jie,Liu ZuofaORCID

Abstract

Aiming at the technical difficulty of poor teeth accuracy of the extruded sun gears, an innovative precision finishing approach was developed as the subsequent process of producing high-quality sun gears, and three finishing tools were designed, namely mandrel with gap, mandrel without gap and interference mandrel. A finite element prediction method was proposed by using the post-processing toolbox of DEFORM software to study the distribution laws of outer and inner teeth deviations of the reshaped sun gear. Moreover, the effects of various precision finishing tools on the formability of sun gear (such as tooth deformation, tool stress and tooth accuracy) were investigated. The results show that the tooth accuracy class of the reshaped outer teeth in profile and helix were seventh and eighth, respectively, and the total M-value error of the inner teeth was decreased to 72.3 μm and the reduction ratio was 73.8% by adopting the interference mandrel, which indicates that the finishing effect of the interference mandrel was better than that of mandrels for both with gap and without gap, and the forming accuracy of the finished teeth could be considerably improved. Therefore, the interference mandrel can be recommended as the optimum finishing tool in the manufacture of precision sun gears. The simulated results were in good agreement with experimental ones within a maximum error of 14.4%, which proves the practicability of the sizing approach and the dependability of the finite element prediction method.

Funder

Chongqing Basic Science and Advanced Technology Research Program

Chongqing Municipal Education Commission Foundation

Chongqing Technology and Business University

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3