Analysis of Elastic Properties of Al/PET Isotropic Composite Materials Using Finite Element Method

Author:

Jeon Yu-Jae,Yun Jong-HwanORCID,Kang Min-SooORCID

Abstract

This study uses the finite element method and numerical analysis to develop an eco-friendly composite material with shielding capabilities. A preliminary study was performed to predict the mechanical properties of the composite material. Polyethylene terephthalate and aluminum powder (AP) were selected as the matrix and enhancer, respectively. The particles of AP are spherical, with a diameter of 1 μm. Material properties were investigated as the AP volume fraction (VF) increased from 5–70%. The FEM results show that the physical properties for AP VFs improve by up to 40%, but there is no significant change in the elastic modulus, shear modulus, and Poisson’s ratio at an AP VF of 50–70%. However, the numerical analysis models show that the elastic properties for AP VFs improve by up to 70%. The mechanical properties improved as the VF increased, and the FEM predicted values were reliable for VFs up to 40%. However, it was confirmed that 40% is the limit of AP VF in the FEM. In addition, the FEM and numerical analysis predictions showed that the most similar numerical analysis model was the Halpin–Tsai model. The predictions of the Halpin–Tsai model allowed prediction of the maximum VF above the FEM limit. If the correction coefficients of the FEM and numerical analysis models are derived based on the predictions of this study and future experimental results, reliable predictions can be obtained for the physical properties of composite materials.

Funder

National Research Foundation of Korea

Ministry of Education

Publisher

MDPI AG

Subject

General Materials Science

Reference62 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3