Deploying Machine and Deep Learning Models for Efficient Data-Augmented Detection of COVID-19 Infections

Author:

Sedik AhmedORCID,Iliyasu Abdullah MORCID,Abd El-Rahiem Basma,Abdel Samea Mohammed E.ORCID,Abdel-Raheem Asmaa,Hammad MohamedORCID,Peng Jialiang,Abd El-Samie Fathi E.ORCID,Abd El-Latif Ahmed A.

Abstract

This generation faces existential threats because of the global assault of the novel Corona virus 2019 (i.e., COVID-19). With more than thirteen million infected and nearly 600000 fatalities in 188 countries/regions, COVID-19 is the worst calamity since the World War II. These misfortunes are traced to various reasons, including late detection of latent or asymptomatic carriers, migration, and inadequate isolation of infected people. This makes detection, containment, and mitigation global priorities to contain exposure via quarantine, lockdowns, work/stay at home, and social distancing that are focused on “flattening the curve”. While medical and healthcare givers are at the frontline in the battle against COVID-19, it is a crusade for all of humanity. Meanwhile, machine and deep learning models have been revolutionary across numerous domains and applications whose potency have been exploited to birth numerous state-of-the-art technologies utilised in disease detection, diagnoses, and treatment. Despite these potentials, machine and, particularly, deep learning models are data sensitive, because their effectiveness depends on availability and reliability of data. The unavailability of such data hinders efforts of engineers and computer scientists to fully contribute to the ongoing assault against COVID-19. Faced with a calamity on one side and absence of reliable data on the other, this study presents two data-augmentation models to enhance learnability of the Convolutional Neural Network (CNN) and the Convolutional Long Short-Term Memory (ConvLSTM)-based deep learning models (DADLMs) and, by doing so, boost the accuracy of COVID-19 detection. Experimental results reveal improvement in terms of accuracy of detection, logarithmic loss, and testing time relative to DLMs devoid of such data augmentation. Furthermore, average increases of 4% to 11% in COVID-19 detection accuracy are reported in favour of the proposed data-augmented deep learning models relative to the machine learning techniques. Therefore, the proposed algorithm is effective in performing a rapid and consistent Corona virus diagnosis that is primarily aimed at assisting clinicians in making accurate identification of the virus.

Funder

Prince Sattam bin Abdulaziz University

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3