Influence of Initiator Concentration on the Polymerization Course of Methacrylate Bone Cement

Author:

Przesławski GrzegorzORCID,Szcześniak KatarzynaORCID,Gajewski PiotrORCID,Marcinkowska AgnieszkaORCID

Abstract

Background: The amount of oxidant (initiator) and reductant (co-initiator) and their ratio have a significant effect on the properties of polymethacrylate bone cement, such as maximum temperature (Tmax), setting time (tset) and compressive strength (σ). The increase in the initiating system concentration causes an increase in the number of generated radicals and a faster polymerization rate, which shortens the setting time. The influence of the redox-initiating composition on the course of polymerization (rate of polymerization and degree of double bond conversion) and the mechanical properties of bone cement will be analyzed. Methods: Bone cements were synthesized by mixing a powder phase composed of two commercially available methacrylate copolymers (Evonic) and a liquid phase containing 2-hydroxyethyl methacrylate (HEMA), methyl methacrylate (MMA), and triethylene glycol dimethacrylate (D3). As an initiating system, the benzoyl peroxide (BPO) as an oxidant (initiator) in combination with a reducing agent (co-initiator), N,N-dimethylaniline (DMA), was used. Samples were prepared with various amounts of peroxide BPO (0.05%, 0.1%, 0.2%, 0.3%, 0.5% and 0.7% by weight) with a constant amount of reducing agent DMA (0.5 wt.%), and various amounts of DMA (0.25%, 0.35% and 0.5% by weight) with a constant amount of BPO (0.3 wt.%). The polymerization kinetics were studied by differential scanning calorimetry (DSC). Doughing time and compressive strength tests were carried out according to the requirements of the ISO 5833:2002 standard. Results: The increase in polymerization rate was due to the increase in the amount of BPO. In addition, the curing time was shortened, as well as the time needed to achieve the maximum polymerization rate. The final conversion of the double bonds in the studied compositions was in the range 74–100%, and the highest value of this parameter was obtained by the system with 0.3 wt.% of BPO. The doughing times for each BPO concentration were in the range of 90–140 s. The best mechanical properties were obtained for the cement following the initiating system concentrations: 0.3 wt.% of BPO and 0.5 wt.% of DMA. Nevertheless, all tested cements met the requirements of the ISO 5833:2002 standard. Conclusions: Based on the conducted polymerization kinetic studies, the best reaction conditions are provided by an initiating system containing 0.3 wt.% of BPO oxidant (initiator) and 0.5 wt.% of DMA reductant (co-initiator). A decrease in the DMA amount caused a decrease in the polymerization rate and the amount of heat released during the reaction. The change in BPO and DMA concentrations in the composition had little effect on the doughing time of the studied bone cement. The cements showed similar doughing times, ranging from 90–225 s, which is comparable to the bone cement available on the market.

Funder

Ministry of Science and Higher Education

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3