Actively Tunable “Single Peak/Broadband” Absorbent, Highly Sensitive Terahertz Smart Device Based on VO2

Author:

Fan Baodian1,Tang Hao2,Wu Pinghui2ORCID,Qiu Yu1,Jiang Linqin1,Lin Lingyan1,Su Jianzhi2,Zhou Bomeng2ORCID,Pan Miao2

Affiliation:

1. Key Laboratory of Green Perovskites Application of Fujian Provincial Universities, Fujian Jiangxia University, Fuzhou 350108, China

2. Key Laboratory of Information Functional Material for Fujian Higher Education, College of Physics and Information Engineering, Quanzhou Normal University, Quanzhou 362000, China

Abstract

In recent years, the development of terahertz (THz) technology has attracted significant attention. Various tunable devices for THz waves (0.1 THz–10 THz) have been proposed, including devices that modulate the amplitude, polarization, phase, and absorption. Traditional metal materials are often faced with the problem of non-adjustment, so the designed terahertz devices play a single role and do not have multiple uses, which greatly limits their development. As an excellent phase change material, VO2’s properties can be transformed by external temperature stimulation, which provides new inspiration for the development of terahertz devices. To address these issues, this study innovatively combines metamaterials with phase change materials, leveraging their design flexibility and temperature-induced phase transition characteristics. We have designed a THz intelligent absorber that not only enables flexible switching between multiple functionalities but also achieves precise performance tuning through temperature stimulation. Furthermore, we have taken into consideration factors such as the polarization mode, environmental temperature, structural parameters, and incident angle, ensuring the device’s process tolerance and environmental adaptability. Additionally, by exploiting the principle of localized surface plasmon resonance (LSPR) accompanied by local field enhancement, we have monitored and analyzed the resonant process through electric field characterization. In summary, the innovative approach and superior performance of this structure provide broader insights and methods for THz device design, contributing to its theoretical research value. Moreover, the proposed absorber holds potential for practical applications in electromagnetic invisibility, shielding, modulation, and detection scenarios.

Funder

Innovative Research Team in Science and Technology at Fujian Province University

National Natural Science Foundation of China

Fujian Provincial Department of Science and Technology

Fujian Foreign Cooperation Science and Technology Program

Quanzhou high level Talents Innovation and Entrepreneurship Project

Quanzhou Science and Technology Plan Project

College Student Innovation Training Program Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Reference62 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3