Improved Finite Element Thermomechanical Analysis of Laminated Composite and Sandwich Plates Using the New Enhanced First-Order Shear Deformation Theory

Author:

Gwak Yunki1,Nguyen Sy-Ngoc2,Kim Jun-Sik3ORCID,Park Hyungbum4,Lee Jaehun2,Han Jang-Woo3

Affiliation:

1. Missile Research Institute, Agency for Defense Development, Daejeon 34186, Republic of Korea

2. Department of Mechanical, Robotics and Energy Engineering, Dongguk University, Seoul 04620, Republic of Korea

3. Department of Mechanical System Engineering, Kumoh National Institute of Technology, Gyeongbuk 39117, Republic of Korea

4. Department of Mechanical Engineering, Incheon National University, Incheon 22012, Republic of Korea

Abstract

This paper proposes a simple yet accurate finite element (FE) formulation for the thermomechanical analysis of laminated composites and sandwich plates. To this end, an enhanced first-order shear deformation theory including the transverse normal effect based on the mixed variational theorem (EFSDTM_TN) was employed in the FE implementation. The primary objective of the FE formulation was to systematically interconnect the displacement and transverse stress fields using the mixed variational theorem (MVT). In the MVT, the transverse stress field is derived from the efficient higher-order plate theory including the transverse normal effect (EHOPT_TN), to enhance the solution accuracy, whereas the displacement field is defined by the first-order shear deformation theory including the transverse normal effect (FSDT_TN), to amplify the numerical efficiency. Furthermore, the transverse displacement field is modified by incorporating the components of the external temperature loading, enabling the consideration of the transverse normal strain effect without introducing additional unknown variables. Based on the predefined relationships, the proposed FE formulation can extract the C0-based computational benefits of FSDT_TN, while improving the solution accuracy for thermomechanical analysis. The numerical performance of the proposed FE formulation was demonstrated by comparing the obtained solutions with those available in the literature, including 3-D exact solutions.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Reference58 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3