EFE-LSTM: A Feature Extension, Fusion and Extraction Approach Using Long Short-Term Memory for Navigation Aids State Recognition

Author:

Cao Jingjing12ORCID,Wen Zhipeng1,Huang Liang234ORCID,Dai Jinshan1,Qin Hu5

Affiliation:

1. School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China

2. State Key Laboratory of Maritime Technology and Safety, Wuhan University of Technology, Wuhan 430063, China

3. National Engineering Research Center for Water Transport Safety, Wuhan University of Technology, Wuhan 430063, China

4. Intelligent Transportation Systems Research Center, Wuhan University of Technology, Wuhan 430063, China

5. School of Management, Huazhong University of Science and Technology, Wuhan 430063, China

Abstract

Navigation aids play a crucial role in guiding ship navigation and marking safe water areas. Therefore, ensuring the accurate and efficient recognition of a navigation aid’s state is critical for maritime safety. To address the issue of sparse features in navigation aid data, this paper proposes an approach that involves three distinct processes: the extension of rank entropy space, the fusion of multi-domain features, and the extraction of hidden features (EFE). Based on these processes, this paper introduces a new LSTM model termed EFE-LSTM. Specifically, in the feature extension module, we introduce a rank entropy operator for space extension. This method effectively captures uncertainty in data distribution and the interrelationships among features. The feature fusion module introduces new features in the time domain, frequency domain, and time–frequency domain, capturing the dynamic features of signals across multiple dimensions. Finally, in the feature extraction module, we employ the BiLSTM model to capture the hidden abstract features of navigational signals, enabling the model to more effectively differentiate between various navigation aids states. Extensive experimental results on four real-world navigation aid datasets indicate that the proposed model outperforms other benchmark algorithms, achieving the highest accuracy among all state recognition models at 92.32%.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Reference46 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3