Efficient Crowd Anomaly Detection Using Sparse Feature Tracking and Neural Network

Author:

Altowairqi Sarah1ORCID,Luo Suhuai1,Greer Peter1,Chen Shan2

Affiliation:

1. School of Information and Physical Sciences, The University of Newcastle, University Drive, Newcastle, NSW 2308, Australia

2. School of Computing, Macquarie University, 4 Research Park Drive, Sydney, NSW 2109, Australia

Abstract

Crowd anomaly detection is crucial in enhancing surveillance and crowd management. This paper proposes an efficient approach that combines spatial and temporal visual descriptors, sparse feature tracking, and neural networks for efficient crowd anomaly detection. The proposed approach utilises diverse local feature extraction methods, including SIFT, FAST, and AKAZE, with a sparse feature tracking technique to ensure accurate and consistent tracking. Delaunay triangulation is employed to represent the spatial distribution of features in an efficient way. Visual descriptors are categorised into individual behaviour descriptors and interactive descriptors to capture the temporal and spatial characteristics of crowd dynamics and behaviour, respectively. Neural networks are then utilised to classify these descriptors and pinpoint anomalies, making use of their strong learning capabilities. A significant component of our study is the assessment of how dimensionality reduction methods, particularly autoencoders and PCA, affect the feature set’s performance. This assessment aims to balance computational efficiency and detection accuracy. Tests conducted on benchmark crowd datasets highlight the effectiveness of our method in identifying anomalies. Our approach offers a nuanced understanding of crowd movement and patterns by emphasising both individual and collective characteristics. The visual and local descriptors facilitate high-level analysis by closely relating to semantic information and crowd behaviour. The analysis observed shows that this approach offers an efficient framework for crowd anomaly detection, contributing to improved crowd management and public safety. The proposed model achieves accuracy of 99.5 %, 96.1%, 99.0% and 88.5% in the UMN scenes 1, 2, and 3 and violence in crowds datasets, respectively.

Publisher

MDPI AG

Reference43 articles.

1. Aldayri, A., and Albattah, W. (2022). Taxonomy of Anomaly Detection Techniques in Crowd Scenes. Sensors, 22.

2. A Review of the Recent Progress on Crowd Anomaly Detection;Altowairqi;Int. J. Adv. Comput. Sci. Appl.,2023

3. Swarm intelligence for detecting interesting events in crowded environments;Kaltsa;IEEE Trans. Image Process.,2015

4. RIMOC, a feature to discriminate unstructured motions: Application to violence detection for video-surveillance;Ribeiro;Comput. Vis. Image Underst.,2016

5. Crowded scene analysis: A survey;Li;IEEE Trans. Circuits Syst. Video Technol.,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3