Novel Microscopic Approach to Particle Size Evaluation in Colloidal Systems

Author:

Calandra Pietro1ORCID,Abe Abraham A.2ORCID,Scavo Antonio3ORCID,Bruno Leonardo4ORCID,Rossi Cesare Oliviero35ORCID,Caputo Paolino35ORCID

Affiliation:

1. National Research Council, Institute of Nanostructured Materials (CNR-ISMN), Via Salaria km 29.300, 00015 Monterotondo, Italy

2. Department of Chemistry, University of Bari, Via E. Orabona 4, 70126 Bari, Italy

3. Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 14/D, 87036 Rende, Italy

4. Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, 87036 Rende, Italy

5. UdR INSTM della Calabria, Via P. Bucci, Cubo 14/D, 87036 Rende, Italy

Abstract

Colloidal systems are peculiar mixtures formed by the uniform dispersion of sub-micro sized particles of one substance through another substance. In this framework, a particular colloidal system, known as sol, is a colloid in which the dispersed particles are solid, and the dispersing medium is fluid. Sols have extensive applications in industries ranging from material science to food to pharmaceuticals and cosmetics. The size and size distribution of colloidal particles within these systems play a pivotal role in determining their stability, rheological properties, and overall functionality (which in turn directly influence material quality, performance, and shelf life). As a result, this study is aimed at devising a new method to analyze the dimensions of the colloidal particles (dispersed phase) of a colloidal system (sol), like bitumen, by (i) a cheap and common technique, optical microscopy, and (ii) the more complex confocal laser scanning microscopy. To do so, a validation by comparison with a standard technique—in this case, atomic force microscopy is presented. Both optical and confocal microscopies turned out to be suitable, valid, and effective for particle size determination. Both techniques effectively revealed, upon bitumen aging, a shift of the size distribution to slightly larger sizes. Large particles, whose abundance did not increase significantly, appeared to be more inert than small ones. A huge advantage of optical microscopy is its popularity and cost-effectiveness as it is commonly featured in laboratories independently of the research topic. On the other hand, confocal microscopy can observe more particles, thus providing better statistics. It also appears to be more efficient for particles smaller than 1 µm2. These microscopy techniques were used to evaluate the dimensions of the asphaltenes present in a complex colloidal system; bitumen; the model colloidal system for this study, which was examined before and after an aging process which is expected to change the size distribution.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3