The Concavity of Conditional Maximum Likelihood Estimation for Logit Panel Data Models with Imputed Covariates

Author:

Otieno Opeyo Peter12ORCID,Cheng Weihu1

Affiliation:

1. Department of Statistics, Beijing University of Technology, Beijing 100124, China

2. Department of Statistics and Computational Mathematics, The Technical University of Kenya, Nairobi P.O. Box 52428-00200, Kenya

Abstract

In estimating logistic regression models, convergence of the maximization algorithm is critical; however, this may fail. Numerous bias correction methods for maximum likelihood estimates of parameters have been conducted for cases of complete data sets, and also for longitudinal models. Balanced data sets yield consistent estimates from conditional logit estimators for binary response panel data models. When faced with a missing covariates problem, researchers adopt various imputation techniques to complete the data and without loss of generality; consistent estimates still suffice asymptotically. For maximum likelihood estimates of the parameters for logistic regression in cases of imputed covariates, the optimal choice of an imputation technique that yields the best estimates with minimum variance is still elusive. This paper aims to examine the behaviour of the Hessian matrix with optimal values of the imputed covariates vector, which will make the Newton–Raphson algorithm converge faster through a reduced absolute value of the product of the score function and the inverse fisher information component. We focus on a method used to modify the conditional likelihood function through the partitioning of the covariate matrix. We also confirm that the positive moduli of the Hessian for conditional estimators are sufficient for the concavity of the log-likelihood function, resulting in optimum parameter estimates. An increased Hessian modulus ensures the faster convergence of the parameter estimates. Simulation results reveal that model-based imputations perform better than classical imputation techniques, yielding estimates with smaller bias and higher precision for the conditional maximum likelihood estimation of nonlinear panel models.

Funder

Beijing University of Technology

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3