Affiliation:
1. Unit of Restorative Dentistry and Endodontics, Department of Medical, Oral and Biotechnological Sciences, University of Chieti, 66100 Chieti, Italy
2. Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
Abstract
To evaluate the flexural strength and flexural modulus of three recently introduced 3D-Printed resins and compare them with the flexural properties of other well known, already commercialized, and extensively used resin based dental materials. Three 3D-printed dental resins, a fiber-reinforced epoxy resin, a heat-cured bis-acrylate-based composite resin, two conventional CAD/CAM PMMA, and a graphene-reinforced CAD/CAM PMMA, were selected for this study. Ten prismatic-shaped specimens (2 × 2 × 25 mm) were fabricated for each material (n = 10). All specimens underwent a three-point bending test using a universal testing machine and were loaded until fracture. Flexural strength (MPa) and flexural modulus (MPa) mean values were calculated and compared using the on ranks One-Way ANOVA test. Scanning electron microscope analysis of the 3D-printed resins was performed. Significantly different flexural properties were recorded among the tested materials. The fiber-reinforced epoxy resin exhibited the highest flexural strength (418.0 MPa) while, among the 3D-printed resins, the best flexural strength was achieved by Irix-Max (135.0 MPa). Irix-Plus and Temporis led to the lowest mean flexural strength values (103.9 MPa and 101.3 MPa, respectively) of all the CAD/CAM milled materials, except for the conventional PMMA by Sintodent (88.9 MPa). The fiber-reinforced epoxy resin also showed the highest flexural modulus (14,672.2 MPa), followed by the heat-cured bis-acrylate composite (10,010.1 MPa). All 3D-printed resins had a higher flexural modulus than the conventional PMMA materials. CAD/CAM fiber-reinforced epoxy resin excels in flexural strength, with Irix-Max showing promising flexural properties, which could encourage its use for permanent restorations. Caution is needed with Irix-Plus and Temporis due to their lower flexural strength compared to other traditional materials.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Driving Design and Performance of Dental Restorations through Next-Generation Additive Manufacturing Resins;2024 3rd International Conference on Computational Modelling, Simulation and Optimization (ICCMSO);2024-06-14