Crosstalk between miR-144/451 and Nrf2 during Recovery from Acute Hemolytic Anemia

Author:

Yang Lei12,He Sheng3,Ling Ling12,Wang Fangfang4ORCID,Xu Lei5,Fang Lei12,Wu Fan12,Zhou Shuting12,Yang Fan12,Wei Hongwei3,Yu Duonan123

Affiliation:

1. Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225009, China

2. Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou 225009, China

3. Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Zhuang Autonomous Region Women and Children Care Hospital, Nanning 530000, China

4. Department of Hematology, Yangzhou University Clinical Medical College, Yangzhou 225001, China

5. Central Laboratory, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225003, China

Abstract

miR-144/451 and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) regulate two antioxidative systems that have been identified to maintain redox homeostasis in erythroid cells by removing excess reactive oxygen species (ROS). Whether these two genes coordinate to affect ROS scavenging and the anemic phenotype, or which gene is more important for recovery from acute anemia, has not been explored. To address these questions, we crossed miR-144/451 knockout (KO) and Nrf2 KO mice and examined the phenotype change in the animals as well as the ROS levels in erythroid cells either at baseline or under stress condition. Several discoveries were made in this study. First, Nrf2/miR-144/451 double-KO mice unexpectedly exhibit similar anemic phenotypes as miR-144/451 single-KO mice during stable erythropoiesis, although compound mutations of miR-144/451 and Nrf2 lead to higher ROS levels in erythrocytes than single gene mutations. Second, Nrf2/miR-144/451 double-mutant mice exhibit more dramatic reticulocytosis than miR-144/451 or Nrf2 single-KO mice during days 3 to 7 after inducing acute hemolytic anemia using phenylhydrazine (PHZ), indicating a synergistic effect of miR-144/451 and Nrf2 on PHZ-induced stress erythropoiesis. However, the coordination does not persist during the whole recovery stage of PHZ-induced anemia; instead, Nrf2/miR-144/451 double-KO mice follow a recovery pattern similar to miR-144/451 single-KO mice during the remaining period of erythropoiesis. Third, the complete recovery from PHZ-induced acute anemia in miR-144/451 KO mice takes longer than in Nrf2 KO mice. Our findings demonstrate that complicated crosstalk between miR-144/451 and Nrf2 does exist and the crosstalk of these two antioxidant systems is development-stage-dependent. Our findings also demonstrate that miRNA deficiency could result in a more profound defect of erythropoiesis than dysfunctional transcription factors.

Funder

National Natural Science Foundation of China

the Postgraduate Research & Practice Innovation Program of Jiangsu Province

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3