The Dynamics of Gene Expression Unraveling the Immune Response of Macrobrachium rosenbergii Infected by Aeromonas veronii

Author:

Peng Xin1,Lan Xuan1,Zhong Zhenxiao1,Tu Haihui1,Yao Xinyi1,Tang Qiongying2ORCID,Xia Zhenglong3,Yang Guoliang13,Yi Shaokui1ORCID

Affiliation:

1. Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences, Huzhou University, Huzhou 313000, China

2. Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, Huzhou University, Huzhou 313000, China

3. Jiangsu Shufeng Prawn Breeding Co., Ltd., Gaoyou 225654, China

Abstract

To further investigate the immune response of Macrobrachium rosenbergii against Aeromonas veronii, comparative transcriptomic analyses of the M. rosenbergii hepatopancreas were conducted on challenge and control groups at 6, 12, and 24 h post-infection (hpi), independently. A total of 51,707 high-quality unigenes were collected from the RNA-seq data, and 8060 differentially expressed genes (DEGs) were discovered through paired comparisons. Among the three comparison groups, a KEGG pathway enrichment analysis showed that 173 immune-related DEGs were considerably clustered into 28 immune-related pathways, including the lysosome, the phagosome, etc. Moreover, the expression levels of the four key immune-related genes (TOLL, PAK1, GSK3β, and IKKα) were evaluated at various stages following post-infection in the hepatopancreas, hemolymph, and gills. Both PAK1 and GSK3β genes were highly up-regulated in all three tissues at 6 hpi with A. veronii; TOLL was up-regulated in the hepatopancreas and hemolymph but down-regulated in the gill at 6 hpi, and IKKα was up-regulated in hemolymph and gill, but down-regulated in the hepatopancreas at 6 hpi. These findings lay the groundwork for understanding the immune mechanism of M. rosenbergii after contracting A. veronii.

Funder

earmarked fund for the China Agriculture Research System

key scientific and technological grant of Zhejiang for breeding new agricultural (Aquaculture) varieties

major research and development program (modern agriculture) of Jiangsu province

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3