The Potential Regulation of A-to-I RNA Editing on Genes in Parkinson’s Disease

Author:

Wu Sijia1ORCID,Xue Qiuping1,Qin Xinyu1,Wu Xiaoming2ORCID,Kim Pora3,Chyr Jacqueline3,Zhou Xiaobo3,Huang Liyu1

Affiliation:

1. School of Life Science and Technology, Xidian University, Xi’an 710071, China

2. School of Life Sciences and Technology, Xi’an Jiaotong University, Xi’an 710049, China

3. Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA

Abstract

Parkinson’s disease (PD) is characterized by dopaminergic neurodegeneration and an abnormal accumulation of α-synuclein aggregates. A number of genetic factors have been shown to increase the risk of PD. Exploring the underlying molecular mechanisms that mediate PD’s transcriptomic diversity can help us understand neurodegenerative pathogenesis. In this study, we identified 9897 A-to-I RNA editing events associated with 6286 genes across 372 PD patients. Of them, 72 RNA editing events altered miRNA binding sites and this may directly affect miRNA regulations of their host genes. However, RNA editing effects on the miRNA regulation of genes are more complex. They can (1) abolish existing miRNA binding sites, which allows miRNAs to regulate other genes; (2) create new miRNA binding sites that may sequester miRNAs from regulating other genes; or (3) occur in the miRNA seed regions and change their targets. The first two processes are also referred to as miRNA competitive binding. In our study, we found 8 RNA editing events that may alter the expression of 1146 other genes via miRNA competition. We also found one RNA editing event that modified a miRNA seed region, which was predicted to disturb the regulation of four genes. Considering the PD-related functions of the affected genes, 25 A-to-I RNA editing biomarkers for PD are proposed, including the 3 editing events in the EIF2AK2, APOL6, and miR-4477b seed regions. These biomarkers may alter the miRNA regulation of 133 PD-related genes. All these analyses reveal the potential mechanisms and regulations of RNA editing in PD pathogenesis.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Natural Science Foundation of Shaanxi Province of China

China Postdoctoral Science Foundation

National Key R&D Program of China

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Reference74 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3