Advanced Skeletal Ossification Is Associated with Genetic Variants in Chronologically Young Beef Heifers

Author:

Shira Katie A.1,Murdoch Brenda M.1ORCID,Davenport Kimberly M.12ORCID,Becker Gabrielle M.1,Xie Shangqian1,Colacchio Antonetta M.1,Bass Phillip D.1,Colle Michael J.1,Murdoch Gordon K.12ORCID

Affiliation:

1. Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID 83844, USA

2. Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA

Abstract

Osteogenesis is a developmental process critical for structural support and the establishment of a dynamic reservoir for calcium and phosphorus. Changes in livestock breeding over the past 100 years have resulted in earlier bone development and increased physical size of cattle. Advanced skeletal maturity is now commonly observed at harvest, with heifers displaying more mature bone than is expected at 30 months of age (MOA). We surmise that selection for growth traits and earlier reproductive maturity resulted in co-selection for accelerated skeletal ossification. This study examines the relationship of single nucleotide polymorphisms (SNPs) in 793 beef heifers under 30 MOA with USDA-graded skeletal maturity phenotypes (A-, B-, C- skeletal maturity). Further, the estrogen content of FDA-approved hormonal implants provided to heifers prior to harvest was evaluated in association with the identified SNPs and maturities. Association tests were performed, and the impact of the implants were evaluated as covariates against genotypes using a logistic regression model. SNPs from the ESR1, ALPL, PPARGC1B, SORCS1 genes, and SNPs near KLF14, ANKRD61, USP42, H1C1, OVCA2, microRNA mir-29a were determined to be associated with the advanced skeletal ossification phenotype in heifers. Higher dosage estrogen implants increased skeletal maturity in heifers with certain SNP genotypes.

Funder

Idaho Beef Council

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3