Molecular Modeling Analysis Provides Genotype–Phenotype Correlation Insights in a Patient with Ankyloblepharon-Ectodermal Dysplasia-Clefting Syndrome

Author:

Douka Anna12,Goutzanis Lambros3,Vlachakis Dimitrios45ORCID,Chrousos George P.5ORCID,Yapijakis Christos125ORCID

Affiliation:

1. Unit of Orofacial Genetics, 1st Department of Pediatrics, School of Medicine, National Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece

2. Laboratory of Molecular Genetics, Cephalogenetics Center, 17675 Athens, Greece

3. Department of Oral and Maxillofacial Surgery, School of Dentistry, National Kapodistrian University of Athens, 11527 Athens, Greece

4. Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece

5. University Research Institute for the Study of Genetic and Malignant Disorders in Childhood, Choremion Laboratory, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece

Abstract

Ankyloblepharon-ectodermal defects-cleft lip/palate (AEC) syndrome is a rare autosomal dominant disorder. AEC is caused by mutations in the TP63 gene that encodes the tumor suppressor p63 protein, itself involved in the regulation of epidermal proliferation, development, and differentiation. We present here a typical AEC case of a four-year-old girl with extensive skin erosions and erythroderma of the scalp and the trunk, and to a lesser extent of the limbs, nail dystrophy on the fingers and toes, xerophthalmia, a high-arched palate, oligodontia, and hypohidrosis. Mutation analysis of the TP63 gene detected a de novo missense mutation in exon 14 (c.1799G>T; p.Gly600Val). We discuss the phenotype–genotype correlation by presenting the clinical features of AEC in the patient, and the effect of the detected mutation in p63 structure and function using protein structural modeling, in view of similar cases in the literature. We performed a molecular modeling study in order to link the effect on the protein structure level of the missense mutation G600V. We noted that the introduction of the bulkier Valine residue in place of the slim Glycine residue caused a significantly altered 3D conformational arrangement of that protein region, pushing away the adjacent antiparallel α helix. We propose that the introduced locally altered structure of the G600V mutant p63 has a significant functional effect on specific protein–protein interactions, thus affecting the clinical phenotype.

Funder

European Regional Development Fund of the European Union

Greek national funds

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3