StrainIQ: A Novel n-Gram-Based Method for Taxonomic Profiling of Human Microbiota at the Strain Level

Author:

Pandey Sanjit1,Avuthu Nagavardhini1ORCID,Guda Chittibabu12ORCID

Affiliation:

1. Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA

2. Center for Biomedical Informatics Research and Innovation, University of Nebraska Medical Center, Omaha, NE 68198, USA

Abstract

The emergence of next-generation sequencing (NGS) technology has greatly influenced microbiome research and led to the development of novel bioinformatics tools to deeply analyze metagenomics datasets. Identifying strain-level variations in microbial communities is important to understanding the onset and progression of diseases, host–pathogen interrelationships, and drug resistance, in addition to designing new therapeutic regimens. In this study, we developed a novel tool called StrainIQ (strain identification and quantification) based on a new n-gram-based (series of n number of adjacent nucleotides in the DNA sequence) algorithm for predicting and quantifying strain-level taxa from whole-genome metagenomic sequencing data. We thoroughly evaluated our method using simulated and mock metagenomic datasets and compared its performance with existing methods. On average, it showed 85.8% sensitivity and 78.2% specificity on simulated datasets. It also showed higher specificity and sensitivity using n-gram models built from reduced reference genomes and on models with lower coverage sequencing data. It outperforms alternative approaches in genus- and strain-level prediction and strain abundance estimation. Overall, the results show that StrainIQ achieves high accuracy by implementing customized model-building and is an efficient tool for site-specific microbial community profiling.

Funder

University of Nebraska Medical Center

multiple NIH awards

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3