Excluding Digenic Inheritance of PGAP2 and PGAP3 Variants in Mabry Syndrome (OMIM 239300) Patient: Phenotypic Spectrum Associated with PGAP2 Gene Variants in Hyperphosphatasia with Mental Retardation Syndrome-3 (HPMRS3)

Author:

Thompson Miles D.1,Li Xueying2,Spencer-Manzon Michele3,Andrade Danielle M.14ORCID,Murakami Yoshiko2,Kinoshita Taroh2,Carpenter Thomas O.5ORCID

Affiliation:

1. Adult Genetic Epilepsy (AGE) Program, Toronto Western Hospital, Krembil Brain Institute, Toronto, ON M5T, Canada

2. Osaka University, 3-1 Yamada-Oka, Osaka 565-0871, Japan

3. Departments of Genetics and Pediatrics, Yale University, New Haven, CT 06520, USA

4. Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON M5S, Canada

5. Yale Pediatrics (Endocrinology), Yale University School of Medicine, New Haven, CT 06521, USA

Abstract

We present a case report of a child with features of hyperphosphatasia with neurologic deficit (HPMRS) or Mabry syndrome (MIM 239300) with variants of unknown significance in two post-GPI attachments to proteins genes, PGAP2 and PGAP3, that underlie HPMRS 3 and 4. Background: In addition to HPMRS 3 and 4, disruption of four phosphatidylinositol glycan (PIG) biosynthesis genes, PIGV, PIGO, PIGW and PIGY, result in HPMRS 1, 2, 5 and 6, respectively. Methods: Targeted exome panel sequencing identified homozygous variants of unknown significance (VUS) in PGAP2 c:284A>G and PGAP3 c:259G>A. To assay the pathogenicity of these variants, we conducted a rescue assay in PGAP2 and PGAP3 deficient CHO cell lines. Results: Using a strong (pME) promoter, the PGAP2 variant did not rescue activity in CHO cells and the protein was not detected. Flow cytometric analysis showed that CD59 and CD55 expression on the PGAP2 deficient cell line was not restored by variant PGAP2. By contrast, activity of the PGAP3 variant was similar to wild-type. Conclusions: For this patient with Mabry syndrome, the phenotype is likely to be predominantly HPMRS3: resulting from autosomal recessive inheritance of NM_001256240.2 PGAP2 c:284A>G, p.Tyr95Cys. We discuss strategies for establishing evidence for putative digenic inheritance in GPI deficiency disorders.

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3