The Developmental Origins of Cancer: A Review of the Genes Expressed in Embryonic Cells with Implications for Tumorigenesis

Author:

Balachandran Savitha1,Narendran Aru1ORCID

Affiliation:

1. Departments of Pediatrics, Oncology, Biochemistry and Molecular Biology, Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada

Abstract

Tumorigenesis, which involves the uncontrolled proliferation and differentiation of cells, has been observed to imitate a variety of pathways vital to embryonic development, motivating cancer researchers to explore the genetic origins of these pathways. The pluripotency gene regulatory network is an established collection of genes that induces stemness in embryonic cells. Dysregulation in the expression genes of the pluripotency gene networks including OCT4, SOX2, NANOG and REX1 have been implicated in tumor development, and have been observed to result in poorer patient outcomes. The p53 pathway is a highly important regulatory process in a multitude of cell types, including embryonic, and the tumor suppressor gene TP53 is widely regarded as being one of the most important genes involved in tumorigenesis. Dysregulations in TP53 expression, along with altered expression of developmentally originating p53 regulators such as MDM2 and MDM4 have been implicated in various cancers, leading to poorer prognosis. Epithelial–mesenchymal transition (EMT), the process allowing epithelial cells to undergo biochemical changes to mesenchymal phenotypes, also plays a vital role in the fate of both embryonic and neoplastic cells. Genes that regulate EMT such as Twist1, SOX9 and REX1 have been associated with an increased occurrence of EMT in cancer cells, leading to enhanced cell stemness, proliferation and metastasis. The class of RNA that does not encode for proteins, known as non-coding RNA, has been implicated in a variety of cellular processes and emerging research has shown that its dysregulation can lead to uncontrolled cell proliferation and differentiation. Genes that have been shown to play a role in this dysregulation include PIWIL1, LIN28A and LIN28B, and have been associated with poorer patient outcomes and more aggressive cancer subtypes. The identification of these developmentally regulated genes in tumorigenesis has proved to play an advantageous role in cancer diagnosis and prognosis, and has provided researchers with a multitude of new target mechanisms for novel chemotherapeutic research.

Funder

Kids Cancer Care Foundation (KCC) Chair in Clinical and Translational Research

Alberta Children’s Hospital Foundation

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3