Genetic and Molecular Interactions between HΔCT, a Novel Allele of the Notch Antagonist Hairless, and the Histone Chaperone Asf1 in Drosophila melanogaster

Author:

Maier DieterORCID,Bauer Milena,Boger MikeORCID,Sanchez Jimenez Anna,Yuan Zhenyu,Fechner Johannes,Scharpf Janika,Kovall Rhett A.,Preiss AnetteORCID,Nagel Anja C.ORCID

Abstract

Cellular differentiation relies on the highly conserved Notch signaling pathway. Notch activity induces gene expression changes that are highly sensitive to chromatin landscape. We address Notch gene regulation using Drosophila as a model, focusing on the genetic and molecular interactions between the Notch antagonist Hairless and the histone chaperone Asf1. Earlier work implied that Asf1 promotes the silencing of Notch target genes via Hairless (H). Here, we generate a novel HΔCT allele by genome engineering. Phenotypically, HΔCT behaves as a Hairless gain of function allele in several developmental contexts, indicating that the conserved CT domain of H has an attenuator role under native biological contexts. Using several independent methods to assay protein–protein interactions, we define the sequences of the CT domain that are involved in Hairless–Asf1 binding. Based on previous models, where Asf1 promotes Notch repression via Hairless, a loss of Asf1 binding should reduce Hairless repressive activity. However, tissue-specific Asf1 overexpression phenotypes are increased, not rescued, in the HΔCT background. Counterintuitively, Hairless protein binding mitigates the repressive activity of Asf1 in the context of eye development. These findings highlight the complex connections of Notch repressors and chromatin modulators during Notch target-gene regulation and open the avenue for further investigations.

Funder

Deutsche Forschungsgemeinschaft DFG

University of Hohenheim

NIH

NSF/MCBBSF

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Reference122 articles.

1. Notch signalling: A simple pathway becomes complex;Bray;Nat. Rev. Mol. Biol.,2006

2. The canonical Notch signaling pathway: Unfolding the activation mechanism;Kopan;Cell,2009

3. Notch signaling at a glance;Hori;J. Cell Sci.,2013

4. Notch signalling in context;Bray;Nat. Rev. Mol. Biol.,2016

5. Mechanistic insights into Notch receptor signaling from structural and biochemical studies;Kovall;Curr. Top. Dev. Biol.,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3