Effect of Growth and Calcination Temperatures on the Optical Properties of Ruthenium-Doped ZnO Nanoparticles

Author:

Dasuki Dema1,Habanjar Khulud1,Awad Ramdan2

Affiliation:

1. Department of Physics, Faculty of Science, Beirut Arab University, Beirut 12-5020, Lebanon

2. Department of Physics, Faculty of Science, Alexandria University, Alexandria 21526, Egypt

Abstract

This study aimed to probe the effect of heat treatment on zinc oxide nanoparticles doped with ruthenium through a chemical co-preparation technique. Pure ZnO and Ru-doped ZnO nanoparticles, with the general formula Zn1−x−RuxO, were synthesized for 0 ≤ x ≤ 0.04. Using the same starting precursors, the growth temperature was 60 °C and 80 °C for set A and set B, respectively, whereas the calcination temperature was 450 °C and 550 °C for set A and set B, respectively. For the structure investigation, X-ray powder diffraction (XRD) revealed that the crystallite size of set A was smaller than that of set B. For x = 0.04 in set B, the maximum value of the crystallite size was attributed to the integration of Ru3+ ions into interstitial sites in the host causing this expansion. Fourier transform infrared spectroscopy (FTIR) confirmed the formation of zinc oxide nanoparticles by showing a Zn-O bonding peak at 421 cm−1. For x = 0.04 in set B, the divergence confirmed the change in bonding properties of Zn2+ distributed by Ru3+ doping, which verifies the presence of secondary-phase RuO2. Using UV–visible spectroscopy, the energy gap of set A swings as ruthenium doping increases. However, in set B, as the crystallite size decreases, the energy gap increases until reversing at the highest concentration of x = 0.04. The transition from oxygen vacancy to interstitial oxygen, which is associated with the blue peak (469 nm), increases in set A under low heating conditions and decreases in set B as Ru doping increases, as revealed in the photoluminescence optical spectra of the samples. Therefore, ruthenium doping proves a useful surface defect and generates distortion centers in the lattice, leading to more adsorption and a remarkable advantage in sunscreen and paint products used for UV protection.

Publisher

MDPI AG

Subject

Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3