Micellar Carriers of Active Substances Based on Amphiphilic PEG/PDMS Heterograft Copolymers: Synthesis and Biological Evaluation of Safe Use on Skin

Author:

Odrobińska JustynaORCID,Skonieczna MagdalenaORCID,Neugebauer DorotaORCID

Abstract

Amphiphilic copolymers containing polydimethylsiloxane (PDMS) and polyethylene glycol methyl ether (MPEG) were obtained via an azide-alkyne cycloaddition reaction between alkyne-functionalized copolymer of MPEG methacrylate and azide-functionalized PDMS. “Click” reactions were carried out with an efficiency of 33–47% increasing grafting degrees. The grafted copolymers were able to carry out the micellization and encapsulation of active substances, such as vitamin C (VitC), ferulic acid (FA) and arginine (ARG) with drug loading content (DLC) in the range of 2–68% (VitC), and 51–89% (FA or ARG). In vitro release studies (phosphate buffer saline, PBS; pH = 7.4 or 5.5) demonstrated that the maximum release of active substances was mainly after 1–2 h. The permeability of released active substances through membrane mimicking skin evaluated by transdermal tests in Franz diffusion cells indicated slight diffusion into the solution (2–16%) and their remaining in the membrane. Studies on the selected carrier with FA showed no negative effect on cell viability, proliferation capacity or senescence, as well as cell apoptosis/necrosis differences or cell cycle interruption in comparison with control cells. These results indicated that the presented micellar systems are good candidates for carriers of cosmetic substances according to physicochemical characterization and biological studies.

Funder

the pro-quality grant for highly scored publications or issued patents of the Rector of the Silesian University of Technology, Gliwice, Poland

Ministerstwo Nauki i Szkolnictwa Wyższego

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3