Wear Resistance of FeCrAlNbNi Alloyed Zone via Laser Surface Alloying on 304 Stainless Steel

Author:

Cui Chunsheng,Nie Jinhao,Li Yuxin,Guan Qingfeng,Cai Jie,Zhang Pengfei,Wu Jie

Abstract

In order to enhance the wear resistance of 304 stainless steel, a FeCrAlNbNi alloyed zone (AZ) was deposited on its surface using laser surface alloying technology, and the wear resistance of the AZ was investigated. The results found that the AZ had a dense and fine structure and no obvious defects, and the microstructure was mainly composed of equiaxed dendrites. A large amount of iron compounds and iron-based solid solutions in the AZ made the average microhardness of the AZ about 2.6 times higher than of the substrate. The friction and wear performance of the AZ at 25 °C, 200 °C, 400 °C and 600 °C better than that of the substrate. As far as the AZ was concerned, the abrasion resistance was the best under normal temperature environment. At 200 °C and 400 °C, due to the repeated extrusion and grinding of the friction pair, the oxide layer formed on the AZ surface was prone to microcracks and peeling off, which reduces the wear resistance. Especially at 400 °C, the formation and peeling speed of the oxide layer is accelerated, and the wear resistance is the lowest. However, when the temperature reached 600 °C, an Al2O3 layer was formed. And the Al2O3 has greater wear resistance to protect the AZ. At this time, the wear resistance was greatly improved compared to 200 °C and 400 °C. Therefore, as the temperature increased, the wear resistance of the AZ first decreased and then increased.

Funder

National Natural Science Foundation of China

Shanxi Scholarship Council of China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3