Modelling of the Steel High-Temperature Deformation Behaviour Using Artificial Neural Network

Author:

Churyumov AlexanderORCID,Kazakova Alena,Churyumova Tatiana

Abstract

Hot forming is an essential part of the manufacturing of most steel products. The hot deformation behaviour is determined by temperature, strain rate, strain and chemical composition of the steel. To date, constitutive models are constructed for many steels; however, their specific chemical composition limits their application. In this paper, a novel artificial neural network (ANN) model was built to determine the steel flow stress with high accuracy in the wide range of the concentration of the elements in high-alloyed, corrosion-resistant steels. The additional compression tests for stainless Cr12Ni3Cu steel were carried out at the strain rates of 0.1–10 s−1 and the temperatures of 900–1200 °C using thermomechanical simulator Gleeble 3800. The ANN-based model showed high accuracy for both training (the error was 6.6%) and approvement (11.5%) datasets. The values of the effective activation energy for experimental (410 ± 16 kJ/mol) and predicted peak stress values (380 ± 29 kJ/mol) are in good agreement. The implementation of the constructed ANN-based model showed a significant influence of the Cr12Ni3Cu chemical composition variation within the grade on the flow stress at a steady state of the hot deformation.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3