Abstract
In recent years, light detection and ranging (LiDAR) has been increasingly utilized to estimate forest resources. This study was conducted to identify the applicability of a LiDAR sensor for such estimations by comparing data on a tree’s position, height, and diameter at breast height (DBH) obtained using the sensor with those by existing forest inventory methods for a Cryptomeria japonica forest in Jeju Island, South Korea. For this purpose, a backpack personal laser scanning device (BPLS, Greenvalley International, Model D50) was employed in a protected forest, where cutting is not allowed, as a non-invasive means, simultaneously assessing the device’s field applicability. The data collected by the sensor were divided into seven different pathway variations, or “patterns” to consider the density of the sample plots and enhance the efficiency. The accuracy of estimating the variables of each tree was then assessed. The time spent acquiring and processing real-time data was also analyzed for each method, as well as total time and the time required for each measurement. The findings showed that the rate of detection of standing trees by LiDAR was 100%. Additionally, a high statistical accuracy was observed in pattern 5 (DBH: RMSE 1.22 cm, bias—0.90 cm, Height: RMSE 1.66 m, bias—1.18 m) and pattern 7 (DBH: RMSE 1.22 cm, bias—0.92 cm, Height: RMSE 1.48 m, bias—1.23 m) compared to the results from the typical inventory method. A range of 115–162.5 min/ha was required to process the data using the LiDAR, while 322.5–567.5 min was required for the typical inventory method. Thus, the application of a backpack personal LiDAR can lead to higher efficiency when conducting a forest resource inventory in a coniferous plantation with understory vegetation. Further research in various stands is necessary to confirm the efficiency of using backpack personal laser scanning.
Funder
National Institute of Forest Science
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献