Change of Oxidation Mechanisms by Laser Chemical Machined Rim Zone Modifications of 42CrMo4 Steel

Author:

Schupp Alexander,Pütz René DanielORCID,Beyss Oliver,Beste Lucas-Hermann,Radel Tim,Zander DanielaORCID

Abstract

The oxidation mechanism of metals depends, among other factors, on the surface integrity. The surface and rim zone properties are often determined by the manufacturing process that was used to machine the material. Laser chemical machining (LCM) is a manufacturing process that uses laser radiation as a localized and selective heat source to activate a chemical reaction between an electrolyte and a metallic surface. The objective of this work is first to investigate how different LCM processes affect the rim zone properties of 42CrMo4. For this purpose, the surface chemistry is analyzed by EDS and XPS, phases and residual stresses are determined by XRD, and the morphology is investigated by SEM. Second, the influence of these modified rim zones on the oxidation properties of the steel at 500 °C in air is to be demonstrated in oxidation tests by in situ XRD and subsequent SEM/EDS investigations. A decisive influence of the oxides formed on the surface of 42CrMo4 during LCM in different electrolytes (NaNO3 solution and H3PO4) at two different laser powers on the high-temperature oxidation properties was demonstrated. These oxides were supposed to act as nucleation sites for oxide layer formation at 500 °C and led to an overall increase in oxide layer thickness after high-temperature oxidation compared to non-LCM-processed surfaces.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3