Boundary SPH for Robust Particle–Mesh Interaction in Three Dimensions

Author:

Kim Ryan1ORCID,Torrens Paul M.1

Affiliation:

1. Department of Computer Science and Engineering, New York University, Brooklyn, NY 10012, USA

Abstract

This paper introduces an algorithm to tackle the boundary condition (BC) problem, which has long persisted in the numerical and computational treatment of smoothed particle hydrodynamics (SPH). Central to the BC problem is a need for an effective method to reconcile a numerical representation of particles with 2D or 3D geometry. We describe and evaluate an algorithmic solution—boundary SPH (BSPH)—drawn from a novel twist on the mesh-based boundary method, allowing SPH particles to interact (directly and implicitly) with either convex or concave 3D meshes. The method draws inspiration from existing works in graphics, particularly discrete signed distance fields, to determine whether particles are intersecting or submerged with mesh triangles. We evaluate the efficacy of BSPH through application to several simulation environments of varying mesh complexity, showing practical real-time implementation in Unity3D and its high-level shader language (HLSL), which we test in the parallelization of particle operations. To examine robustness, we portray slip and no-slip conditions in simulation, and we separately evaluate convex and concave meshes. To demonstrate empirical utility, we show pressure gradients as measured in simulated still water tank implementations of hydrodynamics. Our results identify that BSPH, despite producing irregular pressure values among particles close to the boundary manifolds of the meshes, successfully prevents particles from intersecting or submerging into the boundary manifold. Average FPS calculations for each simulation scenario show that the mesh boundary method can still be used effectively with simple simulation scenarios. We additionally point the reader to future works that could investigate the effect of simulation parameters and scene complexity on simulation performance, resolve abnormal pressure values along the mesh boundary, and test the method’s robustness on a wider variety of simulation environments.

Funder

U.S. Department of Education Graduate Assistance in Areas of National Need (GAANN) fellowship

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3