Analytical Method for Predicting Early Age Thermal Effects in Thick Foundation Slabs

Author:

Klemczak BarbaraORCID

Abstract

Prediction of hydration temperature and induced stresses in mass foundation slabs, due to the hydration effects is a difficult task. The complexity of this issue is compounded by transient and non-linear thermo-mechanical phenomena as well by a significant number of contributing technological and material factors that affect the early-age volume changes. This is a probable reason for the limited number of simple analytical methods allowing for the estimation of these effects. This work presents a new proposal in the discussed field. The submitted analytical method for determining the hydration temperature rise, its differentials at a cross-section and induced thermal stresses in mass concrete foundation slabs considers the majority of important technological and material factors, such as the initial temperature of the concrete, the ambient temperature, the thermal properties of the concrete and the heat exchange conditions on the slab surfaces. In stress analysis, both self-balanced and restraint stresses are calculated. Finally, the method is validated in FE analysis conducted for the slabs with various heights and made of different types of cements, as well as by the thermal measurements from the construction site. Due to the limited number of methods allowing for the analytical estimation of the early age thermo-mechanical effects in slabs, this new proposal can be useful in the assessment of these effects.

Publisher

MDPI AG

Subject

General Materials Science

Reference28 articles.

1. Early-Age Thermal Crack Control in Concrete;Bamforth,2007

2. Properties of Concrete;Neville,2012

3. Thermo–hygro–mechanical modelling of self-induced stresses during the service life of RC structures

4. Guidelines for the Control of Cracking in Reinforced Concrete Structures, Outcomes of the French Research Project CEOS.fr;Barre,2016

5. Complex Effect of Concrete Composition on the Thermo-Mechanical Behaviour of Mass Concrete

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3