Investigation of the Impact of Cold Plasma Treatment on the Chemical Composition and Wettability of Medical Grade Polyvinylchloride

Author:

Bormashenko EdwardORCID,Legchenkova IrinaORCID,Navon-Venezia ShiriORCID,Frenkel Mark,Bormashenko Yelena

Abstract

The impact of the Corona, dielectric barrier discharge, and low pressure radiofrequency air plasmas on the chemical composition and wettability of medical grade polyvinylchloride was investigated. Corona plasma treatment exerted the most pronounced increase in the hydrophilization of polyvinylchloride. The specific energy of adhesion of the pristine and plasma-treated Polyvinylchloride (PVC) tubing is reported. Plasma treatment increased markedly the specific free surface energy of PVC. The kinetics of hydrophobic recovery following plasma treatment was explored. The time evolution of the apparent contact angle under the hydrophobic recovery is satisfactorily described by the exponential fitting. Energy-dispersive X-ray spectroscopy of the chemical composition of the near-surface layers of the plasma-treated catheters revealed their oxidation. The effect of the hydrophobic recovery hardly correlated with oxidation of the polymer surface, which is irreversible and it is reasonably attributed to the bulk mobility of polymer chains.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference51 articles.

1. Biomedical applications of plasma polymerization and plasma treatment of polymer surfaces

2. Plasma surface modification of polymers for biomedical use

3. RF plasma-treated polymers for biomedical applications, Current Science;Gomathi;Curr. Sci.,2008

4. Gas plasmas and plasma modified materials in medicine

5. Plasma Modified Polymeric Materials for Scaffolding of Bone Tissue Engineering;Joshy,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3