To Be or Not to Be? Are Reactive Oxygen Species, Antioxidants, and Stress Signalling Universal Determinants of Life or Death?

Author:

Szechyńska-Hebda MagdalenaORCID,Ghalami Roshanak ZarrinORCID,Kamran Muhammad,Van Breusegem FrankORCID,Karpiński StanisławORCID

Abstract

In the environmental and organism context, oxidative stress is complex and unavoidable. Organisms simultaneously cope with a various combination of stress factors in natural conditions. For example, excess light stress is accompanied by UV stress, heat shock stress, and/or water stress. Reactive oxygen species (ROS) and antioxidant molecules, coordinated by electrical signalling (ES), are an integral part of the stress signalling network in cells and organisms. They together regulate gene expression to redirect energy to growth, acclimation, or defence, and thereby, determine cellular stress memory and stress crosstalk. In plants, both abiotic and biotic stress increase energy quenching, photorespiration, stomatal closure, and leaf temperature, while toning down photosynthesis and transpiration. Locally applied stress induces ES, ROS, retrograde signalling, cell death, and cellular light memory, then acclimation and defence responses in the local organs, whole plant, or even plant community (systemic acquired acclimation, systemic acquired resistance, network acquired acclimation). A simplified analogy can be found in animals where diseases vs. fitness and prolonged lifespan vs. faster aging, are dependent on mitochondrial ROS production and ES, and body temperature is regulated by sweating, temperature-dependent respiration, and gene regulation. In this review, we discuss the universal features of stress factors, ES, the cellular production of ROS molecules, ROS scavengers, hormones, and other regulators that coordinate life and death.

Funder

Polish National Science Centre

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3