Comparative Study on the Effects of Ethanol Proportion on the Particle Numbers Emissions in a Combined Injection Engine

Author:

Sun Ping,Liu Ze,Dong Wei,Yang Song

Abstract

Ethanol has significant potential for the reduction of fuel consumption and the emissions of engines. In this paper, a dual-fuel combined engine test rig with ethanol injected in the intake port and gasoline injected directly into the cylinder are developed and the effects of ethanol/gasoline ratio (Re) on the combustion and emission of particle numbers are investigated experimentally. The results indicate that the peak in-cylinder temperature (Tmax) decreases continuously with the increase of the ethanol/gasoline ratio (Re). For particle emissions, ethanol can significantly reduce the accumulation mode particle number (APN) at low engine speed; and the lowest number of particulates are at G25 (the gasoline ratio is 25% of the fuel) at low load. And at high engine load, the total particle number (TPN) is insensitive to speed with large ethanol fraction and TPN is relatively small. With the decrease of Re (Re < 50%), TPN rises sharply. When the direct injection timing advances, TPN reduces continuously and the effects caused by speed can be neglected. On the contrary, the speed has significant effects on particle emissions at various ignition times. At low speed, increasing ignition advance can cause the increase of the TPN; which is contrary to the effects of particle emissions at medium engine speed. And the effect of ignition timing at high speed on particle number is not obvious. The ignition timing for which the lowest TPN is reached will increase with the direct injection timing advances.

Funder

National Natural Science Foundation of China

State Key Laboratory of Automotive Simulation and Control

National Engineering Laboratory for Mobile Source Emission Control Technology

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3