Feature Extraction and Classification of Motor Imagery EEG Signals in Motor Imagery for Sustainable Brain–Computer Interfaces

Author:

Lu Yuyi1,Wang Wenbo1ORCID,Lian Baosheng1,He Chencheng1

Affiliation:

1. College of Science, Wuhan University of Science and Technology, Wuhan 430081, China

Abstract

Motor imagery brain–computer interface (MI-BCI) systems hold the potential to restore motor function and offer the opportunity for sustainable autonomous living for individuals with a range of motor and sensory impairments. The feature extraction and classification of motor imagery EEG signals related to motor imagery brain–computer interface systems has become a research hotspot. To address the challenges of difficulty in feature extraction and low recognition rates of motor imagery EEG signals caused by individual variations in EEG signals, a classification algorithm for EEG signals based on multi-feature fusion and the SVM-AdaBoost algorithm was proposed to improve the recognition accuracy of motor imagery EEG signals. Initially, the electroencephalography (EEG) signals are preprocessed using Finite Impulse Response (FIR) filters, and a multi-wavelet framework is constructed based on the Morlet wavelet and the Haar wavelet. Subsequently, the preprocessed signals undergo multi-wavelet decomposition to extract energy features, Common Spatial Patterns (CSP) features, Autoregressive (AR) features, and Power Spectral Density (PSD) features. The extracted features are then fused, and the fused feature vector is normalized. Following that, classification is implemented within the SVM-AdaBoost algorithm. To enhance the adaptability of SVM-AdaBoost, the Grid Search method is employed to optimize the penalty parameter and kernel function parameter of the SVM. Concurrently, the Whale Optimization Algorithm is utilized to optimize the learning rate and number of weak learners within the AdaBoost ensemble, thereby refining the overall performance. In addition, the classification performance of the algorithm is validated using a brain-computer interface (BCI) dataset. In this study, it was found that the classification accuracy reached 95.37%. Via the analysis of motor imagery electroencephalography (EEG) signals, the activation patterns in different regions of the brain can be detected and identified, enabling the inference of user intentions and facilitating communication and control between the human brain and external devices.

Funder

National Natural Science Foundation of China

Hubei Province Key Laboratory of System Science in Metallurgical Process

Wuhan University of Science and Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3