Abstract
Atom probe tomography is a well-established analytical instrument for imaging the 3D structure and composition of materials with high mass resolution, sub-nanometer spatial resolution and ppm elemental sensitivity. Thanks to recent hardware developments in Atom Probe Tomography (APT), combined with progress on site-specific focused ion beam (FIB)-based sample preparation methods and improved data treatment software, complex materials can now be routinely investigated. From model samples to complex, usable porous structures, there is currently a growing interest in the analysis of catalytic materials. APT is able to probe the end state of atomic-scale processes, providing information needed to improve the synthesis of catalysts and to unravel structure/composition/reactivity relationships. This review focuses on the study of catalytic materials with increasing complexity (tip-sample, unsupported and supported nanoparticles, powders, self-supported catalysts and zeolites), as well as sample preparation methods developed to obtain suitable specimens for APT experiments.
Funder
Integrated Mesoscale Architectures for Sustainable Catalysis - IMASC, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献