PA from a Recent H9N2 (G1-Like) Avian Influenza A Virus (AIV) Strain Carrying Lysine 367 Confers Altered Replication Efficiency and Pathogenicity to Contemporaneous H5N1 in Mammalian Systems

Author:

Mostafa AhmedORCID,Mahmoud Sara H.,Shehata MahmoudORCID,Müller ChristinORCID,Kandeil AhmedORCID,El-Shesheny RabehORCID,Nooh Hanaa Z.ORCID,Kayali Ghazi,Ali Mohamed A.ORCID,Pleschka Stephan

Abstract

Egypt is a hotspot for H5- and H9-subtype avian influenza A virus (AIV) infections and co-infections in poultry by both subtypes have been frequently reported. However, natural genetic reassortment of these subtypes has not been reported yet. Here, we evaluated the genetic compatibility and replication efficiency of reassortants between recent isolates of an Egyptian H5N1 and a H9N2 AIV (H5N1EGY and H9N2EGY). All internal viral proteins-encoding segments of the contemporaneous G1-like H9N2EGY, expressed individually and in combination in the genetic background of H5N1EGY, were genetically compatible with the other H5N1EGY segments. At 37 °C the replication efficiencies of H5N1EGY reassortants expressing the H9N2EGY polymerase subunits PB2 and PA (H5N1PB2-H9N2EGY, H5N1PA-H9N2EGY) were higher than the wild-type H5N1EGY in Madin-Darby canine kidney (MDCK-II) cells. This could not be correlated to viral polymerase activity as this was found to be improved for H5N1PB2-H9N2EGY, but reduced for H5N1PA-H9N2EGY. At 33 °C and 39 °C, H5N1PB2-H9N2EGY and H5N1PA-H9N2EGY replicated to higher levels than the wild-type H5N1EGY in human Calu-3 and A549 cell lines. Nevertheless, in BALB/c mice both reassortants caused reduced mortality compared to the wild-type H5N1EGY. Genetic analysis of the polymerase-encoding segments revealed that the PAH9N2EGY and PB2H9N2EGY encode for a distinct uncharacterized mammalian-like variation (367K) and a well-known mammalian signature (591K), respectively. Introducing the single substitution 367K into the PA of H5N1EGY enabled the mutant virus H5N1PA-R367K to replicate more efficiently at 37 °C in primary human bronchial epithelial (NHBE) cells and also in A549 and Calu-3 cells at 33 °C and 39 °C. Furthermore, H5N1PA-R367K caused higher mortality in BALB/c mice. These findings demonstrate that H5N1 (Clade 2.2.1.2) reassortants carrying internal proteins-encoding segments of G1-like H9N2 viruses can emerge and may gain improved replication fitness. Thereby such H5N1/H9N2 reassortants could augment the zoonotic potential of H5N1 viruses, especially by acquiring unique mammalian-like aa signatures.

Funder

Science and Technology Development Fund

National Research Centre

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3