A Comprehensive Set of Cooling Measures for the Overall Control and Reduction of High Temperature-Induced Thermal Damage in Oversize Deep Mines: A Case Study

Author:

Zhang WeiORCID,Wang Tianyi,Zhang Dongsheng,Tang Jiajia,Xu Peng,Duan Xu

Abstract

The mining process in deep mines occurs at elevated temperatures and thus is significantly jeopardized by the thermal damage. In this study, the main factors causing high-temperatures under particular mining geological and prevailing conditions of coal mine production, namely for the Longgu Coal Mine (LCM) in Shandong Province of China, were specified and analyzed in detail. This included exothermic heat from the surrounding rock of an underground roadway, inflow of high-temperature water, seasonal temperature rise, mechanical and electrical equipment operation, and airflow compression in the mine. The integrated artificial cooling mode was implemented on the basis of the original normal ventilation and cooling facilities of the LCM, which involved cooling by mobile refrigeration units, water source heat pump refrigeration units, and a ground centralized ice-cooling radiation system, as well as the underground centralized cooling system provided by Wärme-Austausch-Technik (WAT) GmbH. Eventually, a comprehensive set of measures for the overall control and reduction of high-temperature-induced damage was realized, which ensured more effective cooling of the LCM. Thus, the average temperature of the main operation sites was reduced by 8 K, while that of the underground working faces was maintained at 299.15 K. These measures also resulted in excellent technical and economic benefits: the total three-year increase in revenue and savings reached 76.3 million USD, hence relevant findings of the study are expected to provide technical guidance on the treatment of high-temperature-induced damage in deep mines.

Funder

the National Natural Science Foundation of China

the Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference40 articles.

1. Environmental sustainability of open-pit coal mining practices at Baganuur, Mongolia;Jonghoon;Sustainability,2020

2. Opportunities and Challenges in Deep Mining: A Brief Review

3. Groundbreaking theoretical and technical conceptualization of fluidized mining of deep underground solid mineral resources

4. An overview of current status and progress in coal mining of the deep over a kilometer;Hu;China Min. Mag.,2011

5. Experimental measurements of seismic velocities on core samples and their dependence on mineralogy and stress; Witwatersrand Basin (South Africa)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3