Evaluating, Filtering and Clustering Genetic Disease Cohorts Based on Human Phenotype Ontology Data with Cohort Analyzer

Author:

Rojano Elena,Córdoba-Caballero José,Jabato Fernando M.ORCID,Gallego DianaORCID,Serrano Mercedes,Pérez BelénORCID,Parés-Aguilar Álvaro,Perkins James R.,Ranea Juan A. G.,Seoane-Zonjic PedroORCID

Abstract

Exhaustive and comprehensive analysis of pathological traits is essential to understanding genetic diseases, performing precise diagnosis and prescribing personalized treatments. It is particularly important for disease cohorts, as thoroughly detailed phenotypic profiles allow patients to be compared and contrasted. However, many disease cohorts contain patients that have been ascribed low numbers of very general and relatively uninformative phenotypes. We present Cohort Analyzer, a tool that measures the phenotyping quality of patient cohorts. It calculates multiple statistics to give a general overview of the cohort status in terms of the depth and breadth of phenotyping, allowing us to detect less well-phenotyped patients for re-examining or excluding from further analyses. In addition, it performs clustering analysis to find subgroups of patients that share similar phenotypic profiles. We used it to analyse three cohorts of genetic diseases patients with very different properties. We found that cohorts with the most specific and complete phenotypic characterization give more potential insights into the disease than those that were less deeply characterised by forming more informative clusters. For two of the cohorts, we also analysed genomic data related to the patients, and linked the genomic data to the patient-subgroups by mapping shared variants to genes and functions. The work highlights the need for improved phenotyping in this era of personalized medicine. The tool itself is freely available alongside a workflow to allow the analyses shown in this work to be applied to other datasets.

Funder

The Spanish Ministry of Economy and Competitiveness with European Regional Development Fund

Fundación Progreso y Salud

Carlos III Health Institute

Generalitat de Catalunya

Publisher

MDPI AG

Subject

Medicine (miscellaneous)

Reference67 articles.

1. Next-generation sequencing approach for the diagnosis of human diseases: Open challenges and new opportunities;Di Resta;Electron. J. Int. Fed. Clin. Chem. Lab. Med.,2018

2. Advances in Next-Generation Sequencing Bioinformatics for Clinical Diagnostics

3. Recent Advances in the Clinical Application of Next-Generation Sequencing

4. The most common technologies and tools for functional genome analysis

5. Regulatory variants: from detection to predicting impact

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3