Plasma Surface Engineering of Natural and Sustainable Polymeric Derivatives and Their Potential Applications

Author:

Pillai Renjith RajanORCID,Thomas VinoyORCID

Abstract

Recently, natural as well as synthetic polymers have been receiving significant attention as candidates to replace non-renewable materials. With the exponential developments in the world each day, the collateral damage to the environment is incessant. Increased demands for reducing pollution and energy consumption are the driving force behind the research related to surface-modified natural fibers (NFs), polymers, and various derivatives of them such as natural-fiber-reinforced polymer composites. Natural fibers have received special attention for industrial applications due to their favorable characteristics, such as low cost, abundance, light weight, and biodegradable nature. Even though NFs offer many potential applications, they still face some challenges in terms of durability, strength, and processing. Many of these have been addressed by various surface modification methodologies and compositing with polymers. Among different surface treatment strategies, low-temperature plasma (LTP) surface treatment has recently received special attention for tailoring surface properties of different materials, including NFs and synthetic polymers, without affecting any of the bulk properties of these materials. Hence, it is very important to get an overview of the latest developments in this field. The present article attempts to give an overview of different materials such as NFs, synthetic polymers, and composites. Special attention was placed on the low-temperature plasma-based surface engineering of these materials for diverse applications, which include but are not limited to environmental remediation, packaging, biomedical devices, and sensor development.

Funder

NIEHS Superfund program

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference360 articles.

1. Nosch, M.L., and Gillis, C. (2007). Ancient Textiles Production, Crafts and Society, Oxbow Books.

2. Morphology and mechanical properties of unidirectional sisal–epoxy composites;Oksman;J. Appl. Polym. Sci.,2002

3. Preparation and properties of polypropylene composites reinforced with wheat and flax straw fibres: Part I Fibre characterization;Hornsby;J. Mater. Sci.,1997

4. A Review on Natural Fiber Reinforced Polymer Composite and Its Applications;Mohammed;Int. J. Polym. Sci.,2015

5. Review of the history, properties and application of plant fibres;Mwaikambo;Afr. J. Sci. Technol.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3