Effects of Processing Method and Parameters on the Wall Thickness of Gas-Projectile-Assisted Injection Molding Pipes

Author:

Kuang Tangqing1,Wang Jiamin1,Liu Hesheng1,Yuan Zhihuan1

Affiliation:

1. School of Mechatronics & Vehicle Engineering, East China Jiaotong University, Nanchang 330013, China

Abstract

Gas-Projectile-Assisted Injection Molding (G-PAIM) is a new injection molding process derived from the Gas-Assisted Injection Molding (GAIM) process by introducing a projectile to it. In this study, the short-shot method and the overflow method of both the G-PAIM and GAIM processes were experimentally compared and investigated in terms of the wall thickness of the pipes and its uniformity. The results showed that the wall thickness of the G-PAIM molded pipe was thinner and more uniform than that of the GAIM molded pipe, and the wall thickness of the pipe molded by the Gas-Projectile-Assisted Injection Molding Overflow (G-PAIM-O) process was the most uniform. For the G-PAIM-O process, the influence of processing parameters, including melt temperature, gas injection delay time, gas injection pressure, melt injection pressure and mold temperature, on the wall thickness and uniformity of the G-PAIM-O pipes were studied via the single-factor experimental method. It was found that the effects of gas injection delay time and gas injection pressure on the wall thickness of the G-PAIM-O pipes were relatively significant. The wall thickness of the pipes increased with the increase in gas injection delay time and decreased with the increase in gas injection pressure. The melt temperature, melt injection pressure and mold temperature had little effect on the wall thickness of the G-PAIM-O pipes. In general, the wall thickness uniformity of the G-PAIM-O pipes was slightly affected by these processing parameters.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference34 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3